Amino acid catalyzed direct asymmetric aldol reactions: a bioorganic approach to catalytic asymmetric carbon-carbon bond-forming reactions.
نویسندگان
چکیده
Direct asymmetric catalytic aldol reactions have been successfully performed using aldehydes and unmodified ketones together with commercially available chiral cyclic secondary amines as catalysts. Structure-based catalyst screening identified L-proline and 5,5-dimethyl thiazolidinium-4-carboxylate (DMTC) as the most powerful amino acid catalysts for the reaction of both acyclic and cyclic ketones as aldol donors with aromatic and aliphatic aldehydes to afford the corresponding aldol products with high regio-, diastereo-, and enantioselectivities. Reactions employing hydroxyacetone as an aldol donor provide anti-1,2-diols as the major product with ee values up to >99%. The reactions are assumed to proceed via a metal-free Zimmerman-Traxler-type transition state and involve an enamine intermediate. The observed stereochemistry of the products is in accordance with the proposed transition state. Further supporting evidence is provided by the lack of nonlinear effects. The reactions tolerate a small amount of water (<4 vol %), do not require inert reaction conditions and preformed enolate equivalents, and can be conveniently performed at room temperature in various solvents. In addition, reaction conditions that facilitate catalyst recovery as well as immobilization are described. Finally, mechanistically related addition reactions such as ketone additions to imines (Mannich-type reactions) and to nitro-olefins and alpha,beta-unsaturated diesters (Michael-type reactions) have also been developed.
منابع مشابه
Acyclic amino acid-catalyzed direct asymmetric aldol reactions: alanine, the simplest stereoselective organocatalyst.
The linear amino acid-catalyzed direct asymmetric intermolecular aldol reaction is presented; simple amino acids such as alanine, valine, isoleucine, aspartate, alanine tetrazole and serine catalyzed the direct catalytic asymmetric intermolecular aldol reactions between unmodified ketones and aldehydes with excellent stereocontrol and furnished the corresponding aldol products in up to 98% yiel...
متن کاملCatalytic asymmetric synthesis of CF3-substituted tertiary propargylic alcohols via direct aldol reaction of α-N3 amide.
Organofluorine compounds are found in several important classes of chemicals, such as pharmaceuticals, agrochemicals, and functional materials. Chemists have been immensely interested in the development of methodologies for expeditious access to fluorine containing building blocks. In this study, we report a new method for the catalytic asymmetric synthesis of CF3-substituted tertiary propargyl...
متن کاملDirect catalytic asymmetric synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-Mannich and syn-aldol reactions.
Chiral 1,2-amino alcohols and 1,2-diols are common structural motifs found in a vast array of natural and biologically active molecules.1 Recently, significant efforts have been applied toward the development of direct catalytic asymmetric approaches to the construction of these units based on the addition of unmodified R-hydroxyketones to imines or aldehydes in Mannich-type and aldol reactions...
متن کاملCatalytic enantioselective direct Michael additions of ketones to alkylidene malonates
Enantioselective direct Michael additions of ketones using (S)-1-(2-pyrrolidinylmethyl)-pyrrolidine as a catalyst are described. Michael adducts with up to 91% e.e. were obtained by the reaction of alkylidene malonates with simple unactivated ketones under mild reaction conditions. © 2001 Elsevier Science Ltd. All rights reserved. An increasing demand for optically active compounds has stimulat...
متن کاملCatalytic asymmetric synthesis of CF3-substituted tertiary propargylic alcohols via direct aldol reaction of α-N3 amide† †Electronic supplementary information (ESI) available. CCDC 1498994–1498996. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc00330g Click here for additional data file.Click here for additional data file.
Organofluorine compounds are found in several important classes of chemicals, such as pharmaceuticals, agrochemicals, and functional materials. Chemists have been immensely interested in the development of methodologies for expeditious access to fluorine containing building blocks. In this study, we report a new method for the catalytic asymmetric synthesis of CF3-substituted tertiary propargyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 123 22 شماره
صفحات -
تاریخ انتشار 2001